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Abstract. In order to determine the strain tensor in a 375 nm thick Eu(110) epitaxial thin film, we have
developed a new method, based on the accurate determination of the lattice vectors by high resolution
X-ray diffraction. We show that a biaxial strain model gives a good representation of the state of the
strains field in the film.

PACS. 75.70.-i Magnetic properties of thin films, surfaces, and interfaces – 61.10.Nz X-ray diffraction –
68.55.-a Thin films structure and morphology

Introduction

Strains in a material may greatly influence its physical
properties. In particular, in magnetic epitaxial thin films,
the strains, arising from either epitaxial stresses or clamp-
ing effects with the substrate, can modify the magnetoe-
lastic energy terms so that the resulting magnetic prop-
erties differ from the bulk ones [1]. Strains and stresses
determination is usually achieved by X-ray diffraction us-
ing the so-called “sin2ψ” method, well suited for the case
of polycrystalline or textured thin films [2]. When the film
is, in a first approximation, a thin single crystal, one can
actually use a more direct method, based on the accu-
rate determination of the lattice vectors of the strained
film from the measured positions of Bragg peaks in 3-
dimensional reciprocal space. In the following we develop
this simple method for the determination of the strain ten-
sor in a cubic single crystal and apply it to the study of
the temperature dependent strains in a Eu(110) epitaxial
thin film. This work is part of a study of epitaxial Eu thin
films, for which the magnetic behaviour differs from that
of bulk Eu, and depends on the film thickness [3].

Strain determination

The method is presented in an intuitive way in the frame-
work of the cubic symmetry of bcc Eu. The generalisation
to more complex cases is straightforward.

We assume that we can define a homogeneous (aver-
age) strain field inside the film, or at least inside the X-ray
probed sample region. The epitaxial thin film is described
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as a single crystal with unknown lattice vectors (a, b, c)
deviating from the known conventional cubic lattice vec-
tors (a0, b0, c0) of an hypothetical unstrained sample by
small vectors deviations (δa, δb, δc) in such a way that:

⎧
⎪⎨

⎪⎩

a = a0 + δa

b = b0 + δb

c = c0 + δc.

(1)

We can express (δa, δb, δc) in the orthonormal basis
(ux,uy,uz)where ux, uy and uz are unit vectors along
a0, b0 and c0 respectively:

⎧
⎪⎨

⎪⎩

δa = δax ux + δay uy + δaz uz

δb = δbx ux + δby uy + δbz uz

δc = δcx ux + δcy uy + δcz uz.

(2)

Actually, it is easy to show that the nine components of
the lattice vectors deviations identify to the components
of the so-called distortion tensor ↔

γ except for a a0 factor
corresponding to the (unstrained) cubic lattice constant:

↔
γ≡

⎛

⎜
⎝

∂ux/∂x ∂ux/∂y ∂ux/∂z

∂uy/∂x ∂uy/∂y ∂uy/∂z

∂uz/∂x ∂uz/∂y ∂uz/∂z

⎞

⎟
⎠=

1
a0

⎛

⎜
⎝

δax δbx δcx

δay δby δcy

δaz δbz δcz

⎞

⎟
⎠

(3)
where the ui (i = x, y, z) are the components of the dis-
placement vector in the (ux,uy,uz) basis. The compo-
nents εij (i, j = x , y , z ) of the strain tensor ↔

ε are then
deduced from the well known relationship:

εij =
1
2

[
∂ui

∂xj
+
∂uj

∂xi

]

. (4)
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Thus the averaged strain state in the probed region will be
fully determined by the knowledge of the nine components
of the lattice vectors deviations.

In a diffraction experiment however, one works in the
reciprocal space in a basis defined in the usual way:

a∗
0 = 2π

b0 ∧ c0

a0 · (b0 ∧ c0)
, ... and a∗ = 2π

b ∧ c

a · (b ∧ c)
, ...

(5)
for both unstrained and strained samples, respectively. As
in the real space, we define small reciprocal vectors devi-
ations :
⎧
⎪⎨

⎪⎩

δa∗ = δa∗x ux + δa∗y uy + δa∗z uz

δb∗ = δb∗x ux + δb∗y uy + δb∗z uz

δc∗ = δc∗x ux + δc∗y uy + δc∗z uz

with

⎧
⎪⎨

⎪⎩

a∗ = a∗
0 + δa∗

b∗ = b∗0 + δb∗

c∗ = c∗0 + δc∗.

(6)
The development of a∗, b∗ and c∗ to the first order in the
vectors deviations leads to linear relationships between
the components of the vectors deviations in real and in
reciprocal space which can be summarised in a matrix
form:

⎛

⎜
⎝

δa∗x δb
∗
x δc

∗
x

δa∗y δb∗y δc∗y
δa∗z δb

∗
z δc

∗
z

⎞

⎟
⎠ = −2π

a2
0

⎛

⎜
⎝

δax δbx δcx

δay δby δcy

δaz δbz δcz

⎞

⎟
⎠

T

(7)

where the notation ( )T stands for the transposed matrix.
In practice, one defines the reference cubic axes

(a0, b0, c0) attached to the sample through some con-
ventions [4]. All reflections are lined up by adjusting the
diffractometer angles (sample orientation and detector an-
gle), and are indexed in this reference basis [4]: a Bragg
reflection (hkl) (Q = Ghkl = ha∗+kb∗+lc∗ with h, k and
l integer numbers) is actually indexed as (hexpkexplexp)
(with Q = hexp a∗

0+kexp b∗0+lexp c∗0), where the hexp, kexp

and lexp experimental numbers deviate from h, k and l by
small amounts δh, δk and δl:

⎧
⎨

⎩

hexp = h+ δh
kexp = k + δk
lexp = l + δl.

(8)

Identifying the two expressions for the diffraction vector Q
and injecting (8) and (6) combined with (7), we obtain the
relationships between the measured deviations δh, δk and
δl and the unknown components of the vectors deviations:

⎧
⎨

⎩

h δax + k δay + lδ az = −a0 δh
h δbx + k δby + lδ bz = −a0 δk
h δcx + k δcy + lδ cz = −a0 δl.

(9)

Thus, all these 9 components are experimentally deter-
mined from the indexation of at least 3 Bragg reflec-
tions. The strain tensor components are then obtained
from (3) and (4). The method is further improved by
measuring a higher number of reflections and refining the
calculations through a least squares method [5], hence pos-
sibly eliminating systematic errors related to some mis-
alignments [6].

Application: strain tensor determination
in epitaxial Eu films

Following the preceding method, the strain tensor has
been determined as a function of temperature in a 375 nm
Eu(110) epitaxial thin film grown on a 50 nm Nb(110)
buffer with the use of α-Al2O3(112̄0) as a substrate. In
order to avoid any contamination, the highly reactive
Eu film was covered by a final 50 nm Nb layer. The
epitaxial relationships between the Nb buffer and sap-
phire are well known [7], namely: [1̄11]Nb ‖ [0001]sapphire

and [1̄12̄]Nb ‖ [1̄100]sapphire. Those between Nb(110) and
Eu(110) are experimentally found to be : [001]Eu ‖ [001]Nb

and [1̄10]Eu ‖ [1̄10]Nb [8].
The X-rays diffraction experiments were performed on

the BM28 beamline at the ESRF, jointly with Resonant
X-rays Magnetic Scattering (RXMS). The incident pho-
tons wavelength was tuned to 0.892 (1) Å. We must note
here that the main purpose of the experiments was the
characterization of the magnetic structure and its thermal
behaviour, with the beamline actually optimised for mag-
netic scattering (polarisation and elimination of higher or-
der contamination) rather than for strain determination
(resolution). Although the experimental conditions were
not optimum for strain determination, we will see below
that the resolution was actually sufficient.

The sample was mounted in a closed cycle refrigerator
on the 4-circle diffractometer. The automatic indexing of
the reflections as a function of the diffractometer angles is
included in the instrument software SPEC commonly used
at the ESRF. In the chosen geometry, with the growth
direction [110] and the c∗ axis close to the scattering plane
with all diffractometer angles set to zero, a convenient
choice for the reference basis was (a∗

0 + b∗0) ‖ (a∗ + b∗)
and c∗0 in the (a∗ + b∗, c∗) plane. This was achieved by
lining up the (440) and (350) Bragg peaks (the h1ϕ and
h2ϕ vectors from reference [4], respectively).

The chosen reference lattice vectors (a0, b0, c0) were
that of “room” temperature (T0 = 269±4 K) bcc bulk Eu,
with lattice constant a0 = 4.58 Å. For a better comparison
with the behaviour of bulk Eu, strains in this paper will
refer to this lattice constant at any temperature; so that
the true strains for a given temperature (when writing
elastic energy for example) will be obtained by subtracting
the bulk Eu curve to the experimental data (see Figs. 1
and 2).

We measured the hexp, kexp and lexp positions of five
diffraction lines (namely: (440), (350), (352), (242) and
(453)) at several temperatures in the range [285 K – 10 K].
At each temperature, the strain tensor was obtained by
solving the set of 5×3 = 15 equations given by (9). The re-
sults are shown in Figure 1. For comparison, we also show
the thermal behaviour of strains in bulk Eu (relatively to
the 269 K lattice parameter) in the same reference basis, as
derived from the experimental curve obtained by Bulatov
and Kovalev on a Eu single crystal [9]. Comparison of ab-
solute values between bulk Eu and the film is delicate due
to both the poor calibration of the wavelength, and the
uncertainty on the lattice constant of bulk Eu. However,
considerations on variations are still reliable.
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Fig. 1. Temperature dependence of the strains tensor compo-
nents in the 375 nm Eu(110) film, in the (ux, uy , uz) basis.
The zero strains state refers to bulk Eu with a0 = 4.58 Å. For
comparison the bulk Eu behaviour is represented by the dashed
lines obtained from reference [9]. The break at 90 K arises from
the tetragonal distortion accompanying the helimagnetic tran-
sition. Bold lines are the tensor components obtained from the
used biaxial strains model (see text).

We observe a linear evolution of the tensor compo-
nents with decreasing temperature down to TN = 90 K
where RXMS shows that the Eu film undergoes a heli-
magnetic transition [3]. In bulk Eu this transition occurs
at (89 ± 2)K (depending on the sample [9,10]) and is ac-
companied by a tetragonal distortion [9]. The breakdown
of the linear behaviour of tensor components at 90 K is
associated with this lattice distortion. This result consti-
tutes the first experimental confirmation of the work of
Bulatov and Kovalev [9]. Due to this distortion, the dis-
cussion in the following will mainly focus on the results
obtained above TN . Results below TN will be briefly dis-
cussed at the end of this paper.

The diagonal components (Fig. 1a) bring information
about the difference between strains in the film as com-

pared to bulk Eu. The behaviour of εzz shows clearly that
the contraction of the film along the [001] axis with de-
creasing temperature is smaller than in bulk Eu. The bro-
ken symmetry between the [100] and [010] axes has to
be noted too: while the εxx component of the film ap-
proximately follows the bulk one, a distinct value is ob-
served for εyy. The existence of non vanishing off-diagonal
components (Fig. 1b), contrarily to bulk Eu, clearly indi-
cates the presence of residual strains of thermal and/or
epitaxial origin in the film. A deeper examination of these
components shows that they seem to follow the relations
εxy ≈ εzy ≈ −εxz over the whole temperature range, al-
though absolute values are within the uncertainty on the
wavelength.

Actually, for a better understanding of the strains state
inside the film, a different reference basis, linked to the
particular directions of the film seems more convenient.
The first direction is the [110] growth direction while the
other two lie in the growth plane: either [1̄10] and [001] be-
cause of the epitaxial relationships between Nb(110) and
Eu(110), or [1̄11] and [11̄2] because of the epitaxial re-
lationships between Nb(110) and α-Al2O3(112̄0), which
may influence the observed strains in the Eu(110) film.
The full data analysis with either basis showed that the
second one leads to a simpler description of the strains.
We will call ε′ij the strain tensor components expressed in
this new basis, {u′} =

(
u[110],u[1̄11],u[11̄2]

)
.

Figure 2 shows the experimental tensor components
ε′ij in the {u′} basis. The first important information is
given by the ε′11 component (full circles in Fig. 2a) which
follows the bulk value over the whole temperature range.
This shows that the observed strain along the growth di-
rection is only due to the bulk Eu thermal effect with no
influence from the substrate. On the contrary, we observe
a slight change of slope in the temperature dependence of
the in-plane diagonal components ε′22 and ε′33 (open circles
and full squares in Fig. 2a, respectively). More striking in
Figure 2a is the huge difference between the ε′33 values of
the film and that of the bulk. Finally, the off-diagonal ten-
sor components fall within the experimental error at all
temperatures (Fig. 2b): in first approximation, no shear
strains are observable in this basis and we can write the
experimental strains state inside our Eu film in the form:

↔
ε
′
(T ) ≈

⎛

⎝
ε′11(T ) 0 0

0 ε′22(T ) 0
0 0 ε′33(T )

⎞

⎠

where ε′11(T ) is equal to the bulk Eu curve calculated
from reference [9], ε′11(T ) = ε′Eu

11 (T ) = αEu (T − T0),
where αEu is the thermal expansion coefficient of bulk Eu,
αEu = 25 × 10−6 K−1 [11], and T0 is the temperature for
which the lattice parameter of Eu is a0 = 4.58 Å (i.e. the
zero strains state in this work). Within this approxima-
tion, the contribution of the substrate to the strain field
can be viewed as biaxial, a model commonly used for a
cubic symmetry. ε′22(T ) and ε′33(T ) are obtained from a
linear fit of the experimental data: these in-plane compo-
nents are modelled in terms of thermal strains originating
from unequal thermal expansion coefficients between the
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Fig. 2. Temperature dependence of the strains tensor compo-
nents in the (u[110], u[1̄11], u[11̄2]). Bold lines are linear fits to
the data used for the biaxial strains model (see Tab. 1).

Table 1. Results of linear fits of the ε′ii(T ) curves in the tem-
perature range [90 K–285 K].

a+bT fit a(×10−4) b(×10−6 K−1)

Bulk Eu [8]: ε′Eu
11 (T ) −68.2 ± 0.5 25.3 ± 0.2 (αEu)

ε′11(T ) −73 ± 2 26 ± 2

ε′22(T ) −53 ± 5 18 ± 2

ε′33(T ) −19 ± 6 18 ± 2

film and the substrate:

ε′(T ) = ε′(T0) + (αf − αs) (T − T0) = a+ bT

where ε′(T0) is the residual strain, of thermal and/or epi-
taxial origin, at the reference temperature T0; αf and αs

are the thermal expansion coefficients of the film and the
substrate respectively. The results of the linear fits are
summarised in Table 1.

The substrate is made from the Nb buffer epitax-
ially grown on α-sapphire, two materials with similar

expansion coefficients, around (5 ± 2) × 10−6 K−1 for
α-sapphire [12,13] at 300 K (the variations depend on
the directions involved), and around 7 × 10−6 K−1 for
Nb [14]. The thermal expansion of the Nb buffer is
likely influenced by α-sapphire, but we must here con-
sider the substrate as a whole (Nb + α-sapphire). We
find αs = αEu − b = (7 ± 2) × 10−6 K−1, consistent with
the above values.

An estimation of ε′(T0) for the two in-plane tensor
components is obtained from the a values of Table 1:
ε′22(T0) = (−5 ± 5)× 10−4 and ε′33(T0) = (29 ± 6)× 10−4.
As already pointed out, ε′(T0) is the sum of residual ther-
mal strain and epitaxial strain at T0 which can hardly be
separated. However, these results indicate that most of the
residual strain in our Eu film is along the [11̄2] direction
(i.e. ε′33(T )). This may be correlated with the existence
of strains along this direction in epitaxial Nb(110) on the
(112̄0) sapphire [15] which induce the formation of misfit
dislocations.

To complete the physical interpretation of these ε′ii and
estimate the limits of our approximated strain state, we
now come back to the original (ux,uy,uz) basis and de-
rive the εij(i, j = x, y, z) tensor components from the fit-
ted ↔

ε
′
(T ) tensor. The results are represented by bold lines

in Figure 1. Clearly, all the off diagonal components are
fairly well reproduced. Actually, these components have
non zero values because ε′33(T ) and to a lesser extent
ε′22(T ), differ from the bulk Eu curve. The εzz(T ) curve is
reproduced too, although the slope of the line is slightly
overestimated. But it is especially in the estimation of εxx

and εyy that a net breakdown occurs. It is not surprising at
all, because within this approximation εxx and εyy have to
be symmetric due to the assumed nullity of the ε′12 and/or
ε′13 components. Thus, it would be necessary to give a fi-
nite value to these components in order to reproduce the
experimental behaviour of εxx and εyy, meaning that the
true strains state inside the film is not totally confined in
the plane of growth. At the same time, one should also
give a finite value to ε′23, which is of same magnitude as
ε′12 and/or ε′13, with the consequence to improve the es-
timation of εzz(T ). To summarise, the ↔

ε
′
(T ) tensor given

above is a good approximation of the experimental strains
state in the film, except for the diagonal components εxx

and εyy.
Finally, a brief comment about our results below TN is

necessary. In bulk Eu, the helimagnetic order is associated
with a helical propagation vector along the 〈100〉 axis of
the cube, the magnetic moments lying in the perpendicu-
lar planes [10]. The tetragonal distortion coming with the
magnetic transition consists of an elongation along the di-
rection of the propagation vector and a contraction in the
perpendicular plane. The consequence is to separate the
single crystal into three crystallo-magnetic domains. In
our Eu film, RXMS experiments show that it is the case
except for a slight shift in the orientation of the propa-
gation vectors with the 〈100〉 bulk axis [3]. Nevertheless,
the tensor components we found in this range of temper-
atures have to be considered as averaged values over the
three crystallo-magnetic domains.
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Conclusion

A simple method has been proposed for the determina-
tion of strains in a single crystal by using X-ray diffraction
experiments and the accurate determination of the posi-
tions of several Bragg peaks in reciprocal space. In princi-
ple, three diffraction lines have to be measured in order to
completely specify the strain tensor. However, in practice,
due to the experimental errors, the measurement of more
lines is needed. This method has been applied on a Eu
epitaxial thin film showing that, in a first approximation,
the thermal and epitaxial strains are essentially located
along the [11̄2] direction in the plane of growth.
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